Intelligent Malfunction Identification Method in Mechanical Manufacturing Process Based on Multisensor Data

Author:

Wang Meng1ORCID

Affiliation:

1. Tangshan Polytechnic College, Tangshan 063299, Hebei, China

Abstract

Current technology trends have been gradually integrated into the production of all walks of life, which play an indispensable part in promoting the intelligent development of enterprises, and have brought a greater impact on production and reformation. With the rapid development of the economy and technology, the manufacturing industry has played a very important role. For this reason, the introduction of artificial intelligence into machinery manufacturing can not only improve production efficiency but also save labor and reduce labor costs. The application of artificial intelligence in machinery manufacturing has a critical good role in promoting industrial upgrading and transformation. This time, through the application of smart algorithms in machinery manufacturing and its automation, we expect that such a technological revolution can provide a new development prospect for the development of manufacturing intelligence and automation. Taking the malfunction identification of string striking machinery as an example, this paper studies the smart identification method of mechanical malfunction based on multisensor. In the process of malfunction identification of keyboard stroke machinery, the accuracy of malfunction identification results is low due to the influence of the identification model. Moreover, a malfunction identification and analysis method for keyboard stroke machinery based on BP optimized by GA is proposed. The mechanical data of keyboard chords are acquired by sound-sensitive sensors, and the data features are extracted by wavelet packet decomposition. Based on the optimized BP, a mechanical malfunction judgment model is constructed, and various parameters in the model are calculated. The results show that the intelligent identification method proposed has exhibited strong adaptability and superiority compared with the traditional method.

Funder

Hebei University Science and Technology Research Project

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Artificial Intelligence in the Detection of Rotating Mechanical States;2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC);2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3