A Reactive Power Compensated Control Scheme for Solar-Assisted EV Fast-Charging Applications

Author:

Mishra Anjanee K1ORCID,Shukla Saurabh1,Singh Bhim2,Al Durra Ahmad3

Affiliation:

1. Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

2. Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India

3. Advanced Power & Energy Center, EECS Department, Khalifa University, Abu Dhabi, UAE

Abstract

The main objective of this work is to develop an efficient reactive power compensated control technique for a fast-charging scheme for electric vehicle(s) (i.e., level-3 charging). The developed charging technique has the four-quadrant power flow operation with the simultaneous assurance of the compensated reactive power control. The developed charging infrastructure scheme involves a solar panel and 3-phase grid to charge the E-mobility. A DC-DC boost converter is used to achieve maximum power tracking (MPPT) of a solar PV array, and a 3-phase grid-tied bidirectional voltage source converter (VSC) is utilized to provide the bulk of power to charge the EV. The 3-phase VSC has multiple functionalities including grid side power quality (PQ) improvement with reactive power compensation, seamless flow of power from the grid to EV, and solar to grid or battery to grid (V2G) operation. This scheme also facilitates tariffs earned by discharging solar energy to the grid with additional benefits of reactive power compensation. An arrangement is also made to tackle grid failure conditions during battery discharging mode by connecting a load for ancillary purposes. The effectiveness of this charging scheme is first examined in MATLAB/Simulink environment and then validated on developed hardware.

Funder

Science and Engineering Research Board

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single Phase Charging Method in Electric Vehicles with Resistance and Capacitor Value Setting on DC-DC Boost Converter;2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS);2024-02-21

2. Ultra-Fast Charging E-Vehicle Batteries from PV using DC-DC Converter;2022 International Conference on Edge Computing and Applications (ICECAA);2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3