Prediction Model of the Coring Asphalt Pavement Performance through Response Surface Methodology

Author:

Shaffie Ekarizan12ORCID,Jaya Ramadhansyah Putra13ORCID,Ahmad Juraidah2ORCID,Arshad Ahmad Kamil1ORCID,Zihan Mohd Afiq4ORCID,Shiong Fiona2ORCID

Affiliation:

1. Institute for Infrastructure Engineering and Sustainable Management, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia

2. School of Civil Engineering, College of Engineering, Universiti Teknologi Mara, Shah Alam 40450, Selangor, Malaysia

3. Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia

4. Detik Venture Sdn Bhd, 88 Kompleks Putra Off Jalan Gangsa, Alor Setar 05150, Kedah, Malaysia

Abstract

Pavement evaluations provide crucial information regarding the performance and service life of asphalt concrete (HMA). They examine the structure of an existing pavement before deciding on different maintenance alternatives. The Klang Valley, as part of one of the developing areas in the state of Selangor, generates a high volume of traffic every day due to the increasing number of vehicles crossing the area. Every day, the impact of axle loads caused by vehicles has a negative impact on flexible pavement, resulting in road deterioration due to extreme distress. Pothole failures are one of the most common causes of distress. Five research areas in the Klang Valley area that have deteriorated owing to pothole failures were chosen as case studies. The objective of the study is to investigate the existing flexible pavement conditions by means of laboratory testing consisting of physical, volumetric, and performance tests using collected core samples. As a result, the data collected was compared to the Malaysian Public Work Department’s (PWD) standard. Data from laboratory tests was analyzed using Response Surface Methodology (RSM) to determine correlations with parameters influencing distress. Historical data design was carried out between test components and responses, which consisted of laboratory parameters. Axial strain, tensile strength ratio, and stability were the responses measured in the RSM. The created models between the independent variables and responses revealed a high level of correlation. The binder content, degree of compaction, and stiffness were the most significant operating parameters from the 3D plots. Optimized performance due to asphaltic pavement failure was observed at binder content (5.1%), degree of compaction (97%), and stiffness (3.1 kN/mm) to achieve ultimate axial strain (5000 microstrains), tensile strength ratio (80%), and stability (9.2 kN). The study showed that the response surface methodology (RSM) is an effective statistical method for providing an appropriate empirical model for relating parameters and predicting the best performance of an asphaltic mixture to reduce flexible pavement failure.

Funder

Universiti Teknologi MARA

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3