Evaluation Strategy of the Piano Performance by the Deep Learning Long Short-Term Memory Network

Author:

Chang Xunyun1ORCID,Peng Liangqing1

Affiliation:

1. Shaoyang University, Shaoyang, Hunan, China

Abstract

With the development of society and the progress of technology, the piano education industry has a large market. In view of the problem of high payment fees in the piano education industry, the scientific and automatic nature of piano performance evaluation has attracted people’s attention. However, since most of the piano performance evaluation schemes are based on rules, the continuity of the piano music and the accuracy of playing are ignored. Therefore, the purpose is to design a scientific piano performance evaluation scheme that can play a certain role in the sustainable development of the piano education industry. Firstly, long short-term memory in deep learning is explored. Secondly, the musical characteristics of piano performance are analyzed according to the musical instrument digital interface. The piano music features are extracted, and a long short-term memory-based musical instrument digital interface piano performance evaluation model is constructed. Finally, it analyzes the number of hidden layers implemented in the long short-term memory model for piano performance evaluation. The accuracy of piano performance evaluation under different models is analyzed. Under the bidirectional long short-term memory network model, different piano performance levels are evaluated to realize the study of piano performance evaluation strategies. Compared with the accuracy of the recurrent neural network and the long short-term memory model with different hidden layers, the bidirectional long short-term memory model has the highest test accuracy, with an average of 69.78%. When the hidden layer of the bidirectional long short-term memory model is 3, the loss function L value is the smallest, which is 0.11. Different levels of piano skills are evaluated, and the results of the systematic evaluation are consistent with the performance of different levels. This shows that the BLSM model is feasible for the piano performance evaluation strategy system. This study not only conducts an in-depth analysis of the deep learning long short-term memory model but also proposes a long short-term memory-based musical instrument digital interface piano performance evaluation model. Additionally, the flaws such as the incomplete consideration of musical continuity and expressiveness when evaluating piano performance pieces have been compensated. Finally, through different model validations, the bidirectional long short-term memory model is concluded with good accuracy in piano performance evaluation. These conclusions provide theoretical research and practical significance for the accuracy of piano performance evaluation.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3