Affiliation:
1. Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang 110169, China
2. Liaoning Huading Technology Co.Ltd, Shenyang, Liaoning 110167, China
3. State Grid Liaoning Electric Power Company Limited Material Branch Company, Shenyang, China
Abstract
Electric shovels are widely used in the mining industry to dig ore, and the teeth in shovels’ bucket can be lost due to the tremendous pressure exerted by ore materials during operation. When the teeth fall off and enter the crusher with other ore materials, serious damages to crusher gears and other equipment happen, which causes millions of economic loss, because it is made of high-manganese steel. Thus, it is urgent to develop an efficient and automatic algorithm for detecting broken teeth. However, existing methods for detecting broken teeth have little effect and most research studies depended on sensor skills, which will be disturbed by closed cavity in shovel and not stable in practice. In this paper, we present an intelligent computer vision system for monitoring teeth condition and detecting missing teeth. Since the pixel-level algorithm is carried out, the amount of calculation should be reduced to improve the superiority of the algorithm. To release computational pressure of subsequent work, salient detection based on deep learning is proposed for extracting the key frame images from video flow taken by the camera installed on the shovel including the teeth we intend to analyze. Additionally, in order to more efficiently monitor teeth condition and detect missing teeth, semantic segmentation based on deep learning is processed to get the relative position of the teeth in the image. Once semantic segmentation is done, floating images containing the shape of teeth are obtained. Then, to detect missing teeth effectively, image registration is proposed. Finally, the result of image registration shows whether teeth are missing or not, and the system will immediately alert staff to check the shovel when teeth fall off. Through sufficient experiments, statistical result had demonstrated superiority of our presented model that serves more promising prospect in mining industry.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献