Affiliation:
1. QACC, University of Peshawar, Peshawar, Pakistan
2. College of Technological Innovation, Zayed University, Abu Dhabi Campus, UAE
3. University of Derby, Kedleston Rd, Derby, UK
Abstract
The fast industrial revolution all over the world has increased emission of carbon dioxide (CO2), which has badly affected the atmosphere. Main sources of CO2 emission include vehicles and factories, which use oil, gas, and coal. Similarly, due to the increased mobility of automobiles, CO2 emission increases day-by-day. Roughly, 40% of the world’s total CO2 emission is due to the use of personal cars on busy and congested roads, which burn more fuel. In addition to this, the unavailability of parking in all parts of the cities and the use of conventional methods for searching parking areas have added more to this problem. To solve the problem of reducing CO2 emission, a novel cloud-based smart parking methodology is proposed. This methodology enables drivers to automatically search for nearest parking(s) and recommend the most preferred ones that have empty lots. For determining preferences, the methodology uses the analytical hierarchy process (AHP) of multicriteria decision-making methods. For aggregating the decisions, the weighted sum model (WSM) is adopted. The methods of sorting, multilevel multifeatures filtering, exploratory data analysis (EDA), and weighted sum model (WSM) are used for ranking parking areas and recommending top-k parking to the drivers for parking their cars. To implement the methodology, a scenario comprising cars, smart parkings are considered. To use EDA, a freely available dataset “2020testcar-2020-03-03” is used for the estimation of CO2 emitted by cars. For evaluation purpose, the results obtained are compared with the results of traditional approach. The comparison results show that the proposed methodology outperforms the traditional approach.
Subject
Computer Science Applications,Software
Reference44 articles.
1. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models
2. REDUCING GREENHOUSE EMISSIONS AND FUEL CONSUMPTION
3. Greenhouse gas emissions from a typical passenger vehicle,2020
4. Distribution of carbon dioxide emissions produced by the transportation sector worldwide in 2020;I. Tiseo,2021
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献