Smart Fluids and Their Applications in Drilling Fluids to Meet Drilling Technical Challenges

Author:

Jingen Deng1,Egwu Saviour Bassey1ORCID,Xionghu Zhao2

Affiliation:

1. College of Petroleum Engineering, Ministry of Education (MOE) Key Laboratory of Petroleum Engineering, China University of Petroleum, 18 Fuxue Road Changping, Beijing 102249, China

2. State Key Laboratory of Petroleum Resources and Engineering, Ministry of Education (MOE) Key Laboratory of Petroleum Engineering, China University of Petroleum, 18 Fuxue Road Changping, Beijing 102249, China

Abstract

This article presents extensive analysis and review on recent developments in smart fluids as well as future opportunities of smart drilling fluids utilization in oil and gas well drilling while focusing on the following smart fluids: smart nanoparticles, electrorheological, magnetorheological, and viscoelastic surfactant (VES) fluids. The distinctive properties of nanoparticles such as tiny particle sizes, high specific surface area, mechanical strength, and thermal stability make them suitable for utilization in drilling fluids. In bentonite water-based drilling fluid systems, this review suggests that charged nanoparticles are capable of displacing exchangeable ions in between bentonite clay platelets, thereby forming intercalates which can interact with clay surfaces through electrostatic attraction or repulsion. In improving wellbore stability, it is presented in this review that nanoparticles are able to invade and plug ultratiny pore spaces in shale formations, thereby further enhancing shale formations’ mechanical strength and wellbore stability. According to this review, the magnitude of changes in properties of smart electrorheological and magnetorheological fluids largely depends on the intensity of applied electric and magnetic fields. The intensity of smart fluids properties alteration due to applied field would equally depend on wt.% concentration and chemical compositions of particles susceptible to electric and magnetic fields. Based on review carried out on VES smart fluids, attractive and repulsive forces in the smart VES fluids solution result in the formation of micelles which can cause changes in viscoelastic property of the formulated smart viscoelastic fluids. The more the concentration of charged ions in the base fluid which VES fluids come in contact with, the higher the viscoelasticity of the smart VES fluids. According to this review, utilization of smart materials in drilling fluids can result in meeting oil and gas well drilling technical challenges including enhancing wellbore stability, improving hole cleaning performance, lost circulation control, fluid loss control, enhancing rate of penetration, pressure drop control, and easing cutting carrying efficiency of drilling fluids. This review equally suggests that the utilization of smart fluids such as smart magnetorheological and electrorheological fluids would facilitate drilling automation and real-time data acquisition processes, which is the future technology in oil and gas drilling.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3