Integrated Navigation Method of Aerospace Vehicle Based on Rank Statistics

Author:

Kang Jun1ORCID,Xiong Zhi1ORCID,Wang Rong1ORCID,Zhang Xinrui1ORCID

Affiliation:

1. Navigation Research Centre, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

The large dynamic and high-speed flight of aerospace vehicle will bring unpredictable conditions to its navigation system, resulting in that its system random noise probability distribution will no longer meet the preconditions of Gaussian distribution preset by the existing filter algorithm, thus reducing the accuracy of the navigation system. So, it is very important to propose an effective method to solve the filter problem of the navigation system in non-Gaussian distribution to improve the accuracy of the navigation system. Therefore, an integrated navigation method of aerospace vehicle based on rank statistics (LRF) has been proposed in this paper. Firstly, based on the flight characteristics of aerospace vehicles, an accurate gravity calculation model has been established to improve the accuracy of system modelling. Then, the state equation and measurement equation of integrated navigation system have been established. In combination with the rank filter algorithm as well as the determined weights, sampling points are calculated and nonlinearly propagated through the transition matrix to achieve an accurate estimation about the predicted values of the state quantities and measurement quantities and the covariance matrix. In turn, it simulates the probability distribution of the system state effectively. Therefore, when the system random noise probability distribution of the aerospace vehicle does not meet the Gaussian distribution due to various interference factors in the actual flight process, the algorithm can simulate the probability distribution of the actual system to the greatest extent, to improve the accuracy of the integrated navigation system and enhance the reliability of the navigation system ultimately.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3