Corotational Finite Element Dynamic Analysis of Space Frames with Geometrically Nonlinear Behavior Based on Tait–Bryan Angles

Author:

Elerian Ahmed A. H.1ORCID,Shebl Saiid A.1ORCID,Elkaranshawy Hesham A.1ORCID

Affiliation:

1. Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria, Egypt

Abstract

The aim of this study is to compose a corotational finite element formulation for space frames with geometrically nonlinear behavior under dynamic loads. Using a moving frame through three successive rotations similar to Euler angles is one of the oldest techniques; however, there are still some gaps that require attention, mainly due to singularity. Hence, alternative techniques had been developed, sometimes elusive and computationally expensive. In this paper, we went back to the old technique and filled the gaps. Three-coordinate systems are used, i.e., the fixed global coordinate system, the fixed local coordinate system that is attached individually to every element, and the corotational local frame for each element that moves and rotates with the element. The deformation is always small relative to the corotational frame. The successive rotations between different coordinate systems are expressed using Tait–Bryan angles. Lagrange’s equation is used to derive the equation of motion, and the stiffness and mass matrices are obtained using the Euler–Bernoulli beam model. A MATLAB code is developed based on the Newton–Raphson method and the Newmark direct integration implicit method. In traditional techniques, singularity is attained when any rotation angle in the fixed local frame approaches π / 2 , and if any is greater than π / 2 , the techniques could fail to specify the location of the element. In this paper, each case is treated with a proper procedure, and special handling of trigonometric formulations prevents singularity and correctly specifies the location of elements in all situations. Different examples of beams and frames are analysed. While the method is not intricate, it is timesaving, is highly effective, provides more stable and robust analysis, and gives sufficiently accurate results. Compared to the parametrization of the finite rotations technique, the method has a significant reduction in the convergence rate because it avoids the storage of joint orientation matrices.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3