Speech Deception Detection Based on EMD and Temporal Neural Network

Author:

Jiang Youjun1ORCID,Chen Haibo1ORCID,Yuan Shusen1ORCID,Xing Hongbo1ORCID,Cao Yewen1ORCID,Wang Deqiang1ORCID,Xiong Hailiang1ORCID

Affiliation:

1. School of Information Science and Engineering of Shandong University, Qingdao, Shandong, China

Abstract

Deceptive behaviour is a common phenomenon in human society. Research has shown that humans are not good at distinguishing deception, so studying automated deception detection techniques is a critical task. Most of the relevant technologies are susceptible to personal and environmental influences: EEG-based technologies need large and expensive equipment, facial-based technologies are sensitive with the camera’s perspective, and these reasons have somewhat limited the development of applications for deception detection technologies. In contrast, the equipment required for speech deception detection is cheap and easy to use, and the capture of speech is highly covert. Based on the application of signal decomposition algorithms in other fields such as EEG signals and speech emotion recognition, this paper proposed a signal decomposition and reconstruction method based on EMD to process the speech signal and a better deception detection performance was obtained by improving the speech quality. The comparison results with other decomposition algorithms showed that the EMD decomposition algorithm is the most suitable for our method. Across many different classification algorithms, accuracy improved by an average of 2.05% and the F1 score improved by an average of 1.7%. In addition, a new deception detector, called the TCN-LSTM network, was proposed in this paper. Experiments showed that this network organically combines the processing capability of TCN and LSTM for time series data; the recognition rate of deception detection was greatly improved, with the highest accuracy and F1 score reaching 86.2% and 86.0% under the EMD-based signal decomposition reconstruction method. Based on the research in this paper, the signal decomposition algorithms need to be further optimised for speech signals and more classification algorithms not used for this task should be tried.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference37 articles.

1. Lie Detection from Speech Analysis Based on K–SVD Deep Belief Network Model

2. Cues to deception.

3. Lie detector with the analysis of the change of diameter pupil and the eye movement use method Gabor wavelet transform and decision tree;Z. Labibah

4. Distinguishing deception from non-deception in Chinese speech;C. Fan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3