Fixed-Bed Adsorption of an Azo Dye (Methyl Orange) onto Chemically and Thermally Regenerated Activated Carbons

Author:

Taquieteu Idriss Kamdem1,Dzoujo Hermann Tamaguelon1ORCID,Shikuku Victor Odhiambo2,Banenzoué Charles1,Joh Dina Daniel David1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon

2. Department of Physical Sciences, Kaimosi Friends University, P.O. Box 385-50309, Kaimosi, Kenya

Abstract

In this study, the effectiveness of the recovery method for spent granular activated carbon (SGAC) for application in dye removal was evaluated. A comparative study of the textural (porosity), compositional, surface functionality, and adsorption performance of chemically (CAR400) and thermally regenerated activated carbons (CAR700 and CAR900) was conducted for the elimination of methyl orange (MO) dye by using a fixed-bed system. The results were compared with those of commercial activated carbon (CA). The influence of parameters such as the initial dye concentration, the flow rate, the internal diameter of the column, and the bed height was evaluated. Adsorption data were modelled by using the Thomas, Adams–Bohart, and Yoon–Nelson equations. The CAR400 activated carbon had a microporosity (1045 mg/g) comparable to that of the reference commercial (CA) activated carbon (1052 mg/g) but exhibited the least adsorption capacity. The breakthrough curves were best described by the Thomas model more than the Bohart–Adams and Yoon–Nelson’s models. Thomas’s model depicted that an increase in column diameter resulted in a decrease in the maximum adsorption capacity (qo). The CAR900 material exhibited the highest adsorption capacity (15.72 mg/g) comparable to that of commercial activated carbon, CA (16.90 mg/g). These results show that the physical/thermal regeneration of spent granular activated carbons (SGAC) is more suitable for the valorization of these waste materials for water purification applications.

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3