The Silver Ion and Nanocrystalline Pattern in the Glass Substrate, the Electric Field-Induced Thermal Transfer and Ink Absorption Layer Structure and Printing Performance

Author:

Dong Cong1ORCID

Affiliation:

1. Art School, Jiangxi Institute of Fashion Technology, Environmental Design Engineering Technology Research Center, Jiangxi Institute of Fashion Technology, Nanchang 330201, Jiangxi, China

Abstract

People’s research on nanocrystals is getting more in-depth with the development of science and technology, and the patterned arrangement of nanocrystals can greatly improve the performance of our equipment in related fields, allowing people to control the patterning of nanocrystals. Research on thermal transfer is also increasing. Glass materials doped with patterned metal nanocrystals have great application potential, and the search for a simple and efficient patterned preparation method has attracted great attention of many researchers. Using the directional induced migration effect of the high temperature and high voltage DC electric field, combined with the subsequent heat treatment process, the distribution of silver nanocrystals corresponding to the surface silver film pattern can be formed in the silicate glass substrate, to realize the electric field-induced thermal transfer of the nanocrystal pattern print. This article aims to study the patterned thermal transfer of silver ions and nanocrystals on the glass substrate by applying an electric field to induce and analyze the ink absorption layer structure and printing performance. On this basis, an electron beam-induced thermal transfer method and Maxwell’s equation are proposed to investigate and calculate the structure of the ink absorption layer. The experimental structure shows that using this method increases the success rate of the preparation of silver ions and nanocrystal patterns on the glass substrate by 30%, which improves the ink absorption layer and printing performance to different degrees.

Funder

Education Department of Jiangxi Province

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3