Analysis of the Application of Deep Learning in Model Reconstruction of Ancient Buildings

Author:

Wang Zhihong1ORCID,Xiong Hao1

Affiliation:

1. Hubei Polytechnic University, Huangshi, Hubei 435003, China

Abstract

With the rapid development of interactive 3D graphics technology, as well as the growing demand for virtual reality, digital urbanization and digital cultural heritage protection and time-consuming and inefficient traditional artificial building modeling methods have been far from meeting the rapid and intelligent needs of the application market and automatic. Architectural modeling methods have been paid more and more attention. Architectural modeling is an application-oriented comprehensive research field. According to different application scenarios, its research methods cover many technical fields and disciplines. This paper introduces a method of modeling ancient buildings using depth image estimation, spherical projection mapping, 3D adversarial generation network, and other techniques. The characteristics of architectural modeling methods are discussed from different disciplinary and technical perspectives. Second, the three major schools of architectural modeling technology, mainly the process modeling method, image modeling method, and point cloud modeling method, as well as the inverse process modeling method, which has attracted much attention and challenges in recent years, are summarized in detail. Then, the problem of building modeling is discussed. The problems and challenges of building modeling technology are analyzed, and the future development trend is predicted.

Funder

Design and Research of Rural Public Cultural Space in Southeast Hubei under the Background of Rural Revitalization

Publisher

Hindawi Limited

Subject

General Computer Science

Reference20 articles.

1. Collaborative learning for hand and object reconstruction with attention-guided graph convolution;T. H. E. Tse;Computer Vision and Pattern Recognition,2022

2. 3D Building Façade Reconstruction Using Deep Learning

3. AI-enhanced 3D biomedical data analytics for neuronal structure reconstruction;H. Wang;Inhumanity Driven AI,2022

4. MS-GAN: multi-scale GAN with parallel class activation maps for image reconstruction;J. Rao;The Visual Computer,2022

5. Comparison of deep learning-based emission-only attenuation correction methods for positron emission tomography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3