Online Loan Default Prediction Model Based on Deep Learning Neural Network

Author:

Li Baodong1ORCID

Affiliation:

1. School of Statistics and Big Data, Henan University of Economics and Law, Zhengzhou 450046, Henan, China

Abstract

With the rapid development of Internet loans and the demand for Internet loans, Internet-based loan default prediction is particularly important. P2P online lending is based on Internet technology. With the popularization of personal PCs and mobile terminals, the borrower’s financing cost has been reduced to a large extent, and the efficiency of the borrower’s capital utilization has also been improved to a considerable level. Making full use of the existing data of the online lending platform, integrating third-party data, and predicting the default behavior of users are the major directions of future development. This paper mainly studies the network loan default prediction model based on DPNN. This paper first analyzes the problems and risks of the P2P online lending platform, then introduces the principle and characteristics of BPNN in detail, and determines the credit risk rating process for online lending based on BPNN. With the help of data analysis and processing software, after cleaning and variable selection of credit customer data provided by lending clubs, a set of corresponding online lending default risk assessment models are established through BPNN. This paper simulates the network loan default assessment model of the BPNN model and compares it with the support vector machine and regression model. The experimental results show that the highest accuracy rate of the BPNN model is 98.01% and the highest recall rate is 99.82%, which is better than the other two models; the AUC value of BPNN is 0.79, which is significantly higher than that of support vector machine and regression model. The above results show that the online loan default prediction model based on DPNN has high application value in practice. Predicting the probability of customer default risk in advance will help reduce the risk of P2P companies and lenders, improve the competitiveness of P2P lending institutions, and promote the development of domestic P2P platforms to be more stable.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelos para la evaluación de riego crediticio en el ámbito de la tecnología financiera: una revisión;TecnoLógicas;2023-12-20

2. Credit Default Prediction Based on Adaptive Strategy for BWOA-CatBoost;2023 IEEE 4th International Conference on Pattern Recognition and Machine Learning (PRML);2023-08-04

3. Retracted: Online Loan Default Prediction Model Based on Deep Learning Neural Network;Computational Intelligence and Neuroscience;2023-08-02

4. LightMIRM: Light Meta-learned Invariant Risk Minimization for Trustworthy Loan Default Prediction;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3