Particle Ratios in a Multicomponent Nonideal Hadron Resonance Gas

Author:

Parra Rameez Ahmad1ORCID,Uddin Saeed2ORCID,Bashir Waseem3ORCID,Bashir Inam-ul4ORCID

Affiliation:

1. Department of Physics, Central University of Kashmir, India

2. Department of Physics, Jamia Millia Islamia (Central University), New Delhi, India

3. Department of Physics, Government Degree College, Budgam, J&K, India

4. Jammu & Kashmir, Higher Education Department, India

Abstract

We have considered formation of a multicomponent nonideal hot and dense gas of hadronic resonances in the ultrarelativistic heavy ion collisions. In the statistical thermal model approach, the equation of state (EoS) of the noninteracting ideal hadron resonance gas (IHRG) does not incorporate either the attractive part or the short-range repulsive part of the baryonic interaction. On the other hand, in the nonideal hadron resonance gas (NIHRG) model, we can incorporate these interactions using the van der Waals (VDW) type approach. Studies have been made to see its effect on the critical parameters of the quark-hadron phase transition. However, it can also lead to modifications in the calculated relative particle yields. In this paper, we have attempted to understand the effect of such van der Waals-type interactions on the relative particle yields and also studied their dependences on the system’s thermal parameters, such as the temperature and baryon chemical potential μ B . We have also taken into account the decay contributions of the heavier resonances. These results on particle ratios are compared with the corresponding results obtained from the point-like, i.e., noninteracting IHRG model. It is found that the particle ratios get modified by incorporating the van der Waals-type interactions, especially in a baryon-rich system which is expected to be formed at lower RHIC energies, SPS energies, and in the forthcoming CBM experiments due to high degree of nuclear stopping in these experiments.

Funder

Council of Scientific and Industrial Research, India

Publisher

Hindawi Limited

Subject

Nuclear and High Energy Physics

Reference103 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3