Combined Failure Diagnosis of Slewing Bearings Based on MCKD-CEEMD-ApEn

Author:

Wang Fengtao1ORCID,Liu Chenxi1ORCID,Su Wensheng2ORCID,Xue Zhigang2ORCID,Han Qingkai1ORCID,Li Hongkun1ORCID

Affiliation:

1. Institute of Vibration Engineering, Dalian University of Technology, Dalian 116024, China

2. Jiangsu Province Special Equipment Safety Supervision Inspection Institute, Branch of Wuxi, Wuxi 214071, China

Abstract

Large-size and heavy-load slewing bearings, which are mainly used in heavy equipment, comprise a subgroup of rolling bearings. Owing to the complexity of the structures and working conditions, it is quite challenging to effectively diagnose the combined failure and extract fault features of slewing bearings. In this study, a method was proposed to denoise and classify the combined failure of slewing bearings. First, after removing the mean, the vibration signals were denoised by maximum correlated kurtosis deconvolution. The signals were then decomposed into several intrinsic mode functions (IMFs) by complementary ensemble empirical mode decomposition (CEEMD). Appropriate IMFs were selected based on the correlation coefficient and kurtosis. The approximate entropy values of the selected IMFs were regarded as the characteristic vectors and then inputted into the support vector machine (SVM) based on multiclass classification for training. The practical combined failure signals of the 3 conditions were finally recognized and classified using SVMs. The study also compared the proposed method with 5 other methods to demonstrate the superiority and effectiveness of the proposed method.

Funder

Jiangsu Province Special Equipment Safety Supervision Inspection Institute, Branch of Wuxi

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3