Notch1 Pathway Protects against Burn-Induced Myocardial Injury by Repressing Reactive Oxygen Species Production through JAK2/STAT3 Signaling

Author:

Cai Weixia1,Yang Xuekang1,Han Shichao1,Guo Haitao2,Zheng Zhao1,Wang Hongtao1,Guan Hao1,Jia Yanhui1,Gao Jianxin1,Yang Tao13,Zhu Xiongxiang1,Hu Dahai1

Affiliation:

1. Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China

2. Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, Shaanxi 710032, China

3. First Student Brigade, Fourth Military Medical University, Xi’an, Shaanxi 710032, China

Abstract

Oxidative stress plays an important role in burn-induced myocardial injury, but the cellular mechanisms that control reactive oxygen species (ROS) production and scavenging are not fully understood. This study demonstrated that blockade of Notch signaling via knockout of the transcription factor RBP-J or a pharmacological inhibitor aggravated postburn myocardial injury, which manifested as deteriorated serum CK, CK-MB, and LDH levels and increased apoptosisin vitroandin vivo. Interruption of Notch signaling increased intracellular ROS production, and a ROS scavenger reversed the exacerbated myocardial injury after Notch signaling blockade. These results suggest that Notch signaling deficiency aggravated postburn myocardial injury through increased ROS levels. Notch signaling blockade also decreased MnSOD expressionin vitroandin vivo. Notably, Notch signaling blockade downregulated p-JAK2 and p-STAT3 expression. Inhibition of JAK2/STAT3 signaling with AG490 markedly decreased MnSOD expression, increased ROS production, and aggravated myocardial injury. AG490 plus GSI exerted no additional effects. These results demonstrate that Notch signaling protects against burn-induced myocardial injury through JAK2/STAT3 signaling, which activates the expression of MnSOD and leads to decreased ROS levels.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3