Early Detection of Forest Fire Using Mixed Learning Techniques and UAV

Author:

Kasyap Varanasi LVSKB1,Sumathi D.1,Alluri Kumarraju1,Reddy CH Pradeep1,Thilakarathne Navod2ORCID,Shafi R. Mahammad3ORCID

Affiliation:

1. VIT-AP University, Amaravati, Andhra Pradesh 522237, India

2. Faculty of Technology, University of Colombo, Colombo, Sri Lanka

3. College of Engineering and Technology, Tepi Campus, Mizan-Tepi University, Mizan Teferi, Ethiopia

Abstract

Over the last few decades, forest fires are increased due to deforestation and global warming. Many trees and animals in the forest are affected by forest fires. Technology can be efficiently utilized to solve this problem. Forest fire detection is inevitable for forest fire management. The purpose of this work is to propose deep learning techniques to predict forest fires, which would be cost-effective. The mixed learning technique is composed of YOLOv4 tiny and LiDAR techniques. Unmanned aerial vehicles (UAVs) are promising options to patrol the forest by making them fly over the region. The proposed model deployed on an onboard UAV has achieved 1.24 seconds of classification time with an accuracy of 91% and an F1 score of 0.91. The onboard CPU is able to make a 3D model of the forest fire region and can transmit the data in real time to the ground station. The proposed model is trained on both dense and rainforests in detecting and predicting the chances of fire. The proposed model outperforms the traditional methods such as Bayesian classifiers, random forest, and support vector machines.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3