Early Detection of Forest Fire Using Mixed Learning Techniques and UAV
Author:
Affiliation:
1. VIT-AP University, Amaravati, Andhra Pradesh 522237, India
2. Faculty of Technology, University of Colombo, Colombo, Sri Lanka
3. College of Engineering and Technology, Tepi Campus, Mizan-Tepi University, Mizan Teferi, Ethiopia
Abstract
Publisher
Hindawi Limited
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Link
http://downloads.hindawi.com/journals/cin/2022/3170244.pdf
Reference36 articles.
1. Unmanned Aerial Vehicle (UAV) based Forest Fire Detection and monitoring for reducing false alarms in forest-fires
2. Fire Detection Using Infrared Images for UAV-Based Forest Fire Surveillance;C. Yuan
3. An adaptive threshold deep learning method for fire and smoke detection
4. Learning-Based Smoke Detection for Unmanned Aerial Vehicles Applied to Forest Fire Surveillance
5. Convolutional Neural Network-Based Deep Urban Signatures with Application to Drone Localization
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A comprehensive survey of research towards AI-enabled unmanned aerial systems in pre-, active-, and post-wildfire management;Information Fusion;2024-08
2. M4SFWD: A Multi-Faceted synthetic dataset for remote sensing forest wildfires detection;Expert Systems with Applications;2024-08
3. ForestML: A Real-Time Solution Proposal for UAV acquired Multispectral Imagery Analysis using Machine Learning;2024 9th International Conference on Smart and Sustainable Technologies (SpliTech);2024-06-25
4. LEO Satellite Oriented Wildfire Detection Model Using Deep Neural Networks: A Transfer Learning Based Approach;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02
5. Advancing Forest Fire Risk Evaluation: An Integrated Framework for Visualizing Area-Specific Forest Fire Risks Using UAV Imagery, Object Detection and Color Mapping Techniques;Drones;2024-01-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3