Affiliation:
1. Xiamen Academy of Arts and Design, Fuzhou University, Xiamen 361000, Fujian, China
2. Chengdu University, Chengdu 610000, Sichuan, China
Abstract
Aiming at the problems of low building segmentation accuracy and blurred edges in high-resolution remote sensing images, an improved fully convolutional neural network is proposed based on the SegNet network. First, GELU, which performs well in deep learning tasks, is selected as the activation function to avoid neuron deactivation. Second, the improved residual bottleneck structure is used in the encoding network to extract more building features. Then, skip connections are used to fuse images The low-level and high-level semantic features are used to assist image reconstruction. Finally, an improved edge correction module is connected at the end of the decoding network to further correct the edge details of the building and improve the edge integrity of the building. Experiments are carried out on the Massachusetts building dataset, and the precision rate, recall rate, and F1 value reach 93.5%, 79.3%, and 81.9%, respectively, and the comprehensive evaluation index F1 value is improved by about 5% compared with the basic network.
Funder
Fujian Province Young and Middle-Aged Teachers’ Education and Scientific Research Project Grant
Subject
Computer Science Applications,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献