Neurofuzzy c-Means Network-Based SCARA Robot for Head Gimbal Assembly (HGA) Circuit Inspection

Author:

Kiatwanidvilai Somyot1ORCID,Praserttaweelap Rawinun1ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok, Thailand

Abstract

Decision and control of SCARA robot in HGA (head gimbal assembly) inspection line is a very challenge issue in hard disk drive (HDD) manufacturing. The HGA circuit called slider FOS is a part of HDD which is used for reading and writing data inside the disk with a very small dimension, i.e., 45 × 64 µm. Accuracy plays an important role in this inspection, and classification of defects is very crucial to assign the action of the SCARA robot. The robot can move the inspected parts into the corresponding boxes, which are divided into 5 groups and those are “Good,” “Bridging,” “Missing,” “Burn,” and “No connection.” A general image processing technique, blob analysis, in conjunction with neurofuzzy c-means (NFC) clustering with branch and bound (BNB) technique to find the best structure in all possible candidates was proposed to increase the performance of the entire robotics system. The results from two clustering techniques which are K-means, Kohonen network, and neurofuzzy c-means were investigated to show the effectiveness of the proposed algorithm. Training results from the 30x microscope inspection with 300 samples show that the best accuracy for clustering is 99.67% achieved from the NFC clustering with the following features: area, moment of inertia, and perimeter, and the testing results show 92.21% accuracy for the conventional Kohonen network. The results exhibit the improvement on the clustering when the neural network was applied. This application is one of the progresses in neurorobotics in industrial applications. This system has been implemented successfully in the HDD production line at Seagate Technology (Thailand) Co. Ltd.

Funder

King Mongkut’s Institute of Technology Ladkrabang

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3