Angelica Yinzi Alleviates Pruritus-Related Atopic Dermatitis through Skin Repair, Antioxidation, and Balancing Peripheral μ- and κ-opioid Receptors

Author:

Liu Wei12,Luo Yang3,Song Wanci3ORCID,Dan Hanxiong3,Li Li4,Zhou Daonian2ORCID,You Pengtao3ORCID

Affiliation:

1. Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

2. Research Center, Mayinglong Pharmaceutical Group Co. Ltd., Wuhan 430060, Hubei, China

3. Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China

4. Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, China

Abstract

Background. Angelica Yinzi (AYZ) is a Chinese traditional herbal formula reported to attenuate itches and inflammation caused by atopic dermatitis (AD). However, the underlying mechanism of AYZ in the attenuation of itchiness and inflammation remains unknown. Objective. This study investigated the mechanism of AYZ in reducing itchiness in mice with 1-chloro-2,4-dinitrobenzene- (DNCB-)-induced atopic dermatitis. Methods. Hematoxylin and eosin (H&E) and toluidine blue staining were used to evaluate pathological changes in skin tissue, while an enzyme‐linked immunosorbent assay (ELISA) was used to assess the cytokine levels in the skin. After that, qRT-PCR was performed to determine the mRNA levels of cytokines in the skin. Immunofluorescence and western blotting analysis were further used to assess µ-opioid receptor (MOR) expression and immunohistochemistry to assess the p-ERK, p-AKT, and κ-opioid receptor (KOR). Results. The AYZ treatment alleviated the AD clinical symptoms, including decreasing the scratching frequency, the ear thickness, and the infiltration of mast cells, lymphocytes, inflammatory cells, and mononuclear cells. In addition, AYZ inhibited the expression of interleukin (IL)-13, thymic stromal lymphopoietin (TSLP), and reduced neuraminidase (NA), corticotropin-releasing factor (CRF), and reactive oxygen species (ROS) expression. Markers involved in itches, such as p-ERK and p-AKT, were significantly downregulated following AYZ treatment. Besides, AYZ significantly increased MOR expression and downregulated KOR in the epidermis and spinal cord. Conclusion. Our findings imply that AYZ ameliorates pruritus-related AD through skin repair, antioxidation, and balancing peripheral MOR and KOR. The findings in this study lay a theoretical foundation for the control mechanism of peripheral itch.

Funder

Natural Science Foundation of Hubei Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3