Combining Piezoelectric Stimulation and Extracellular Vesicles for Cartilage Regeneration

Author:

Lai Chengteng1,Jin Fei2,Feng Zhangqi2,Zhang Rui3,Yuan Meng3,Qian Lili2,Zhang Lei1ORCID,Wang Yongxiang4ORCID,Zhao Jianning1ORCID

Affiliation:

1. Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China

2. School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

3. Center for Public Health Research, Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210002, China

4. Department of Orthopaedics, Northern Jiangsu People’s Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou 225001, China

Abstract

Numerous patients experience articular cartilage defects (ACDs), which are characterized by progressive cartilage degradation and often lead to osteoarthritis (OA). Consequently, 44.7% of OA patients suffer from dyskinesia or disability. Current clinical drug treatments offer limited effectiveness in fully curing the disease. In this study, we propose a collaborative approach that combines physical and biological cues to promote cartilage regeneration. A biodegradable piezoelectric poly (l-lactic acid) (PLLA) nanofiber scaffold facilitates in situ, battery-free electrical stimulation under natural joint loading, while extracellular vesicles (EVs) serve as communication mediators between cells and promote cell proliferation, migration, and secretion of type II collagen. In this combined approach, EVs attached to PLLA are gradually released by localized piezoelectric electrical stimulation and taken up by chondrocytes. This process results in the organization of type II collagen along the PLLA fiber surface, ultimately forming cartilage lacunae that facilitate the residence of new chondrocytes. As an outcome, a significant round cartilage defect (diameter: 3 mm and depth: 1 mm) in the PLLA/EVs group (rat and knee) was rapidly restored within six weeks. In contrast, individual EVs and PLLA groups demonstrated considerably weaker cartilage regeneration capabilities. This research suggests that the synergistic effect of electromechanical stimulation and EVs-based biological cues is a crucial intervention method for treating OA.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3