Integrated Design of Multimode and Multifrequency Miniaturized Handset Antenna at VHF/UHF Bands

Author:

Zhang Yandong1ORCID,Zhang Hui234,Xu Liang5,Li Linao1,Li Chunxiao5,An Zhijuan5ORCID

Affiliation:

1. School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

2. Chongqing University, Chongqing 400044, China

3. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

4. Xi’an Starnet Antenna Technology Co., Ltd., Xi’an, China

5. School of Physics, Xidian University, Xi’an 710071, China

Abstract

This paper presents an integrated design of a multimode and multifrequency miniaturized handset antenna working at the lower band (0.24–0.7 GHz) with linear polarization and higher band (1.98–2.01 GHz and 2.17–2.20 GHz) with circular polarization simultaneously. At the higher band, the quadrifilar helix antenna (QHA) is utilized with each arm developed into two arms of different lengths and linearly tapered widths to realize double resonance and increase the bandwidth. Moreover, a helical stub behaving as a director is introduced to improve the antenna gain. At the lower band, the outer conductor of the QHA feedline and four QHA arms are designed to constitute a monopole antenna through proper feeding and introducing four quarter-wavelength short-circuit stubs. With this radiator-sharing technique, the QHA not only works at the higher band with a circular polarization pattern but can act as a monopole antenna working at the lower band with a linear polarization pattern simultaneously. As a result, the size of the antenna can be reduced remarkably. Finally, the proposed antenna is fabricated with a total length of 228 mm and a diameter of 15 mm. At the lower band, the measured S11 is below −8 dB, and the gain is larger than 0.5 dBi. At the higher band, the measured S11 and AR are better than −13 dB and 3 dB, respectively, and the gain within the zenith angle range of 0°−35° is greater than 2.5 dBi, which demonstrates better performance.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3