An Efficient Trajectory Negotiation and Verification Method Based on Spatiotemporal Pattern Mining

Author:

Liu Yongqi1,Wang Miao1ORCID,Zhong Zhaohua2,Zhong Kelin3ORCID,Wang Guoqing1

Affiliation:

1. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China

2. China Aeronautical Radio Electronics Research Institute, Shanghai, China

3. COMAC Shanghai Aircraft Design and Research Institute, Shanghai, China

Abstract

In trajectory-based operations, trajectory negotiation and verification are conducive to using airspace resources fairly, reducing flight delay, and ensuring flight safety. However, most of the current methods are based on route negotiation, making it difficult to accommodate airspace user-initiated trajectory requests and dynamic flight environments. Therefore, this paper develops a framework for trajectory negotiation and verification and describes the trajectory prediction, negotiation, and verification processes based on a four-dimensional trajectory. Secondly, users predict flight trajectories based on aircraft performance and flight plans and submit them as requested flight trajectories to the air traffic management (ATM) system for negotiation in the airspace. Then, a spatiotemporal weighted pattern mining algorithm is proposed, which accurately identifies flight combinations that violate the minimum flight separation constraint from four-dimensional flight trajectories proposed by users, as well as flight combinations with close flight intervals and long flight delays in the airspace. Finally, the experimental results demonstrate that the algorithm efficiently verifies the user-proposed flight trajectory and promptly identifies flight conflicts during the trajectory negotiation and verification processes. The algorithm then analyzes the flight trajectories of aircrafts by applying various constraints based on the specific traffic environment; the flight combinations which satisfy constraints can be identified. Then, based on the results identified by the algorithm, the air traffic management system can negotiate with users to adjust the flight trajectory, so as to reduce flight delay and ensure flight safety.

Funder

Natural Science Foundation of Shanghai

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3