Network Model with Scale-Free, High Clustering Coefficients, and Small-World Properties

Author:

Yan Chuankui1ORCID

Affiliation:

1. College of Mathematics and Physics, Wenzhou University, Wenzhou 325035, China

Abstract

Networks are prevalent in real life, and the study of network evolution models is very important for understanding the nature and laws of real networks. The distribution of the initial degree of nodes in existing classical models is constant or uniform. The model we proposed shows binomial distribution, and it is consistent with real network data. The theoretical analysis shows that the proposed model is scale-free at different probability values and its clustering coefficients are adjustable, and the Barabasi-Albert model is a special case of p = 0 in our model. In addition, the analytical results of the clustering coefficients can be estimated using mean-field theory. The mean clustering coefficients calculated from the simulated data and the analytical results tend to be stable. The model also exhibits small-world characteristics and has good reproducibility for short distances of real networks. Our model combines three network characteristics, scale-free, high clustering coefficients, and small-world characteristics, which is a significant improvement over traditional models with only a single or two characteristics. The theoretical analysis procedure can be used as a theoretical reference for various network models to study the estimation of clustering coefficients. The existence of stable equilibrium points of the model explains the controversy of whether scale-free is universal or not, and this explanation provides a new way of thinking to understand the problem.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3