Competitive Adsorption of Cadmium (II) from Aqueous Solutions onto Nanoparticles of Water Treatment Residual

Author:

Elkhatib Elsayed1ORCID,Mahdy Ahmed1,Sherif Fatma1,Elshemy Walaa1

Affiliation:

1. Department of Soil and Water Sciences, Alexandria University, Alexandria 21545, Egypt

Abstract

There is increasing interest in using water treatment residuals (WTRs) for heavy metals removal from wastewater due to their low cost, availability, and high efficiency in removing various pollutants. In this study, novel water treatment residuals nanoparticles (nWTRs) were prepared using high energy ball milling and used for efficient removal of Cd(II) in single- and multi-ion systems. The WTR nanoparticles demonstrated high removal efficiency for Cd from aqueous solution as the adsorption capacities of nWTR were 17 and 10 times higher than those of bulk WTR in single- and multielement systems, respectively. Noticeably, Cd(II) adsorption was clearly suppressed in the multi-ion system as Cu and Pb form the most stable monohydroxo complexes. Fourier transmission infrared (FTIR) analyses suggested the participation of OH, O-Al-O, FeOH, and FeOOH entities in the adsorption process. The stability of Cd-nWTR surface complexes is evident as less than 0. 2% of adsorbed Cd(ll) was released at the highest Cd(II) concentration load after 4 consecutive desorption cycles. Moreover, the real efficiency of nWTR for Cd(II) removal from wastewater samples studied was calculated to be 98.35%. These results highlight the potential of nWTR for heavy metals removal from wastewater.

Funder

Science and Technology Development Fund

Publisher

Hindawi Limited

Subject

General Materials Science

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3