A Head-Mounted Spectacle Frame for the Study of Mouse Lens-Induced Myopia

Author:

Gu Yangshun1,Xu Baisheng1,Feng Chunfei2,Ni Yang3,Wu Qin1,Du Chixin1,Hong Nan1,Li Peng3,Ding Zhihua3,Jiang Bo1

Affiliation:

1. Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China

2. Department of Operation Room, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China

3. State Key Lab of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China

Abstract

The mouse model has been widely employed to explore the mysteries of myopia. For now, existing techniques for induction of experimental myopia in mice can be classified into three types: (1) devices directly glued to the fur; (2) devices attached using a combination of glue and sutures; (3) devices attached using a skull-mounted apparatus. These techniques each have its advantages, disadvantages when considering the devices stability, safety, complexity, effectiveness, and so forth. Thus, techniques for myopia induction in mice have yet to be further refined to popularize the applications. In this pilot study, we introduce a new head fixation device named the head-mounted spectacle frame apparatus for the study of mouse lens-induced myopia. Surgical procedures for device attachment were relatively simple and easy to learn in our study. Effective myopia induction was validated by retinoscopy refraction and axial length measurement using optical coherence tomography. In addition, it showed improved compliance and reliable safety when compared to the published methods. The head-mounted spectacle frame apparatus provides a new choice for the study of lens-induced myopia in mouse. It also allows for the use of form deprivation, making it attractive for future experimental mouse myopia trials.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Ophthalmology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3