Identification of the Immune Cell Infiltration Landscape in Head and Neck Squamous Cell Carcinoma (HNSC) for the Exploration of Immunotherapy and Prognosis

Author:

Huang Chunli1,Liu Jifeng2ORCID

Affiliation:

1. Operating Room, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China

2. Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China

Abstract

It is generally believed that the majority of head and neck cancers develop in the mucosal epithelial cells of the mouth, pharynx, and larynx, which is collectively known as head and neck squamous cell carcinoma (HNSC). As a complex pathological process, HNSC develops through a variety of cellular and molecular events. Cancerous cells and immune cells infiltrating tumors are the main components of the tumor microenvironment. However, infiltration of HNSCs by the immune system has not been determined to date. In this work, we proposed computational algorithms to identify different immune subtypes. An analysis of the Cancer Genome Atlas (TCGA) database revealed gene expression profiles and corresponding clinical information. In HNSC patients, two immune-related genes (ZAP70 and IGKV2D-40) may be targets for immunotherapy, and these genes appear to be closely related to the prognosis. Several immunological subtypes were associated with immune function, immune checkpoints, and prognostic factors in HNSCs. Furthermore, ZAP70 is closely related to the overall survival (OS), progress-free interval (PFI), and disease-specific survival (DSS) of HNSC patients. The potential pathways that are associated with ZAP70 were found to have included adaptive immune response, response to oxidative stress, DNA replication, and lipid binding. This study provides a theoretical foundation for developing immunotherapy drugs for HNSC patients. By evaluating larger cohorts, we can gain a deeper understanding of immunotherapy and provide direction for current research on immunotherapy strategies in HNSCs.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3