Numerical Modeling and Simulation of the Droplet Transmission of SARS-CoV-2 in the Ambient Environment and Its Relevance to Social Distancing

Author:

Thanigaiarasu S.1ORCID,Balamani G.1ORCID,Bakiya A.2ORCID,Immaculyne Flavia3ORCID,Kamalanand K.2ORCID,De Britto R. L. J.4ORCID

Affiliation:

1. Department of Aerospace Engineering, MIT Campus, Anna University, Chennai 600044, India

2. Department of Instrumentation Engineering, MIT Campus, Anna University, Chennai 600044, India

3. Department of Mechanical Engineering, National University of Singapore, Singapore

4. Clinical Epidemiology & Chemotherapy, Indian Council of Medical Research (ICMR), Vector Control Research Centre (VCRC), Puducherry 605006, India

Abstract

In SARS and influenza-type infections, the transmission of the viral particles from the infected individual to the susceptible individual involves the respiratory route. The current novel CoV2 transmission also involves a similar mechanism. The virus particles are present as droplets ranging from 5 to 10 μm in diameter and are expelled into ambient air when the infected individual coughs, sneezes, or even speaks. These tiny droplets move over a distance through the atmosphere, and the initial velocity determines the maximum distance the droplets reach. In this work, a computational fluid dynamic model was developed using Ansys Fluent software, incorporating the physical characteristics of the viral droplets and the ambient atmosphere. The movement of these particles was analyzed for three different initial velocities of 1, 5, and 10 m/s. Furthermore, the maximum distance traveled by the simulated particles for higher velocities was analyzed using a linear regression model. Results demonstrate that the simulated viral particles embedded in the droplets can travel a maximum distance of 1.24 m for an initial velocity of 10 m/s. Furthermore, an increase in the initial velocity to a value of 30 m/s results in the particle’s movement to a maximum distance of 2.595 m. The study results indicate that at least 2.5 meters distance has to be maintained for effective social distancing to prevent the further spread of the novel CoV2 transmission. Even after the lifting of the lockdown, institutional social distancing needs to be practiced to abate the transmission to a near-zero level and to prevent a rebound. In public places such as public transport and shopping malls, strict adherence to wearing masks must be made mandatory by social regulation.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3