Decomposition Dynamics of Leaf Litter Mixtures Enriched with NPS Fertilizer and Resultant Effects on Common Bean Productivity in Nutrient Depleted Soil

Author:

Laekemariam Fanuel1ORCID,Elka Ermias1

Affiliation:

1. College of Agriculture, Wolaita Sodo University, P.O.Box 138, Wolaita Sodo, Ethiopia

Abstract

Organic materials have a nonreplaceable role to improve soil quality and productivity. Yet, processes related to decomposition and nutrient supply capacity are restricted under nutrient-depleted soils. Thus, a field experiment was conducted to evaluate the decomposition rate of leaf litter mixtures treated with mineral nitrogen (N), phosphorous (P), and sulfur (S) fertilizer in the form of NPS (19N38P2O57S), and their effects on agronomic performance of common bean (Phaseolus vulgaris L.). The mixtures of croton (Croton macrostachyus) and erythrina (Erythrina brucei) leaf litters (LLs) were placed at 20 cm depth in a litterbag at a rate equivalent to 2.5 and 5 t/ha, and treated with four NPS rates (0, 50, 100, and 150 kg/ha). The leaf litters have low carbon (C) to N ratio. The experiments (litterbag and crop response) were laid out in a randomized complete block design with three replications. The decomposition pattern was monitored at a two week interval (15, 30, 45, and 56 days after application) and assessed for daily decomposition rate (k), weight loss, and time required to decompose half of the residue (t50). For the crop response experiment, selected growth and yield component parameters, and grain yield data were recorded. The results indicated that NPS fertilizer and the amount of LL were significantly ( p < 0.01 ) influenced the k values and weight loss. The k at 14 days varied from 4.47% day−1 (150 NPS kg/ha × 2.5 t LL/ha) and 2.75% day−1 (sole 2.5 t/ha LL) in which application of mineral NPS fertilizer enhanced k by 62.5%. The k values, averaged over 56 days, revealed 2.68% day−1 (150 kg NPS/ha × 2.5 t LL/ha), and 1.78% day−1 in the unfertilized 2.5 LL. The decay rate was faster within 14 days and declined afterward. Over 56 days, 60.4% and 46.6% of the original mass remained in litters without NPS fertilizer, and 150 NPS kg/ha x 2.5 t LL/ha, respectively. The residue weight loss also significantly decreased with time (r2 > 0.98). Half-lifetime was significantly ( p < 0.001 ) decreased with the increasing rate of NPS application (r = −0.86). The t50 values, averaged over 56 days, were between 38.9 days (nontreated LL) and 27.8 days (150 kg NPS/ha), respectively. The result regarding agronomic performance indicated that the application of NPS fertilizer on the leaf litters significantly ( p < 0.01 ) increased the growth, yield component, and grain yield of common bean. For instance, 150 kg NPS/ha on 2.5 t/ha LL has resulted in a 79% grain yield advantage over LL without NPS. Grain yield also showed significant relationship ( p < 0.01 ) with k (r = 0.67), mass loss (r = −0.67), and t50 (r = −0.66). The finding suggests that for plant residues with a narrow C/N ratio in nutrient-depleted soils, the addition of mineral NPS fertilizer is advantageous for increased decomposition and yield of legume crops.

Publisher

Hindawi Limited

Subject

Earth-Surface Processes,Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3