Affiliation:
1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China
2. Intelligent Numerical Control Equipment Engineering Laboratory of Henan Province, Luoyang 471003, China
Abstract
In order to solve the problem that a single type of sensor cannot fully reflect the bearing life information in the process of bearing residual life prediction of metro traction motor, a bearing residual life prediction method based on multi-information fusion and convolutional neural network is proposed. Firstly, the vibration sensor and acoustic emission sensor are used to collect the bearing life signals on the bearing fatigue life test bench. Secondly, wavelet packet decomposition is used to denoise the collected bearing life signal and extract multiple eigenvalues. On this basis, the multiple eigenvalues are normalized, and the bearing degradation trend is analyzed. Finally, the collected bearing life is divided into five stages, and the processed multiple eigenvalues are fused and input into convolutional neural network for training and recognition. The results show that the probability of predicting the stage of bearing life based on multiple eigenvalues and convolutional neural network is more than 98%.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献