Role of PKR in the Inhibition of Proliferation and Translation by Polycystin-1

Author:

Tang Yan12ORCID,Shi Guang1,Yang JungWoo2,Zheng Wang2,Tang Jingfeng3,Chen Xing-Zhen2ORCID,Yang Jianzheng1ORCID,Wang Zuocheng2ORCID

Affiliation:

1. Department of Oncology, The Second Hospital, Jilin University, Changchun 130041, China

2. Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G2H7, Canada

3. National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430086, China

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by mutations in the PKD1 (~85%) or PKD2 (~15%) gene which, respectively, encode polycystin-1 (PC1) and polycystin-2 (PC2). How PC1 regulates cell proliferation and apoptosis has been studied for decades but the underlying mechanisms remain controversial. Protein kinase RNA-activated (PKR) is activated by interferons or double-stranded RNAs, inhibits protein translation, and induces cell apoptosis. In a previous study, we found that PC1 reduces apoptosis through suppressing the PKR/eIF2α signaling. Whether and how PKR is involved in PC1-inhibited proliferation and protein synthesis remains unknown. Here we found that knockdown of PKR abolishes PC1-inhibited proliferation and translation. Because suppressed PKR-eIF2α signaling/activity by PC1 would stimulate, rather than inhibit, the proliferation and translation, we examined the effect of dominant negative PKR mutant K296R that has no kinase activity and found that it enhances the inhibition of proliferation and translation by PC1. Thus, our study showed that inhibition of cell proliferation and protein synthesis by PC1 is mediated by the total expression but not the kinase activity of PKR, possibly through physical association.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3