Optimization of Residential Landscape Design and Supply Chain System Using Intelligent Fuzzy Cognitive Map and Genetic Algorithm

Author:

Deng Tingyin1ORCID

Affiliation:

1. Sichuan University of Science & Engineering, Zigong, Sichuan 643000, China

Abstract

This work intends to optimize residential landscape design and Supply Chain (SC) network systems. First, Fuzzy Cognitive Map (FCM) intelligent assistance and genetic algorithm (GA) are used to study residential landscape design and its integration with SC deeply. Weight matrix interactions are employed to implement iterative inference for FCM. The functions are transformed to unify variables of different scopes. Subsequently, a weighting method is proposed to deal with the disadvantage of the simple average method being too general. In addition, the Hebbian learning algorithm is used to adjust the state nodes and the connection weights. Finally, according to the fitness function of the GA and logistic regression (LR) model, residential landscape design and SC are combined. The simulation experiment results show that the causal relationship analysis between SC networks under fuzzy cognition shows that the state errors of each specific situation are 0.21, 0.16, and 0.24, respectively. The total average error is 0.21 in the case of multiple iterations. The average error of the result vector under fuzzy cognition and the operation of the actual result is 0.20, 0.15, and 0.24, respectively, and the error value is much reduced. The simulation accuracy of the GA-LR method for residential landscape design is improved from 77% to 84.7%. The “kappa coefficient” is also improved to 82.3%. The conclusion shows that the weight matrix is used to analyze the high-quality performance of landscape design according to the specific situation of SC. For each specific case, FCM is effective in reducing errors over multiple iterations. Under the GA-LR method, fewer geographic location types and larger accuracy deviations can improve the simulation accuracy.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multivariate Travel Time Forecasting in a Traffic Network Using Fuzzy Cognitive Mapping;2023 IEEE World Conference on Applied Intelligence and Computing (AIC);2023-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3