Affiliation:
1. College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China
Abstract
The rolling bearing is an extremely important basic mechanical device. The diagnosis of its fault play an important role in the safe and stable operation of the mechanical system. This study proposed an approach, based on the Fast Fourier Transform (FFT) with Decimation-In-Time (DIT) and XGBoost algorithm, to identify the fault type of bearing quickly and accurately. Firstly, the original vibration signal of rolling bearing was transformed by DIT-FFT and divided into the training set and test set. Next, the training set was used to train the fault diagnosis XGBoost model, and the test set was used to validate the well-trained XGBoost model. Finally, the proposed approach was compared with some common methods. It is demonstrated that the proposed approach is able to diagnose and identify the fault type of bearing quickly with almost 99% accuracy. It is more accurate than Machine Learning (89.88%), Ensemble Learning (93.25%), and Deep Learning (95%). This approach is suitable for the fault diagnosis of rolling bearing.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献