Design and Error Compensation Performance of a Precision Micro-Drive Rotary System

Author:

Yang Manzhi1ORCID,Jing Gang1ORCID,Lv Zhenyang1,Guo Wei1,Huang Yumei2,Wei Kaiyang1ORCID,Li Linyue1ORCID,Feng Bin1,Ge Hongyu1,Li Shuaitian1

Affiliation:

1. College of Mechanical Engineering, Xi’an University of Science and Technology, No. 58 Yanta Middle Road, Xi’an, Shaanxi 710054, China

2. School of Mechanical and Precision Instrumental Engineering, Xi’an University of Technology, No. 8 Jinhua South Road, Xi’an, Shaanxi 710048, China

Abstract

In order to obtain motion with large travel and high precision, the micro-drive system is used to compensate for the motion error of the macro-drive system in the macro/micro dual-drive system. The research on the micro-drive rotary system lags behind the micro-drive linear system, so it is of great significance to study the designing and error compensation performance of a precision micro-drive rotary system. In this paper, a precision micro-drive rotary system is designed, the error compensation scheme of the system is proposed, and the system feasibility in design and error compensation is tested by FEM simulation analysis and performance experiments. Firstly, a precision micro-drive rotary system is designed to provide high-precision rotary motion, which consists of a micro rotary mechanism and PZT. In the system, the micro rotary mechanism is developed based on the compound motion principle of flexure hinge, which can accurately transform an input of linear motion into an output of rotary motion according to a certain relationship. Secondly, for finishing the error compensation scheme of the system, the maximum compensation modifier θ max is proposed based on the analysis of error compensation equations of point-to-point motion and continuous motion. Finally, in order to facilitate the use of engineering, the driven voltage equation of error compensation is derived by the error compensation performance experiment. The simulation and experiment results indicate that both the design and error-compensation-range of the system satisfy the needs of practical application.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3