Opinion Texts Clustering Using Manifold Learning Based on Sentiment and Semantics Analysis

Author:

Jahanbakhsh Gudakahriz Sajjad1ORCID,Eftekhari Moghadam Amir Masoud1ORCID,Mahmoudi Fariborz2ORCID

Affiliation:

1. Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2. Advanced Analytics Department, General Motors Company, Warren, MI, USA

Abstract

Nowadays, opinion texts are quickly published on websites and social networks by various users in the form of short texts and also in high volumes and various fields. Because these texts reflect the opinions of many users, their processing and analysis, such as clustering, can be very useful in a variety of applications including politics, industry, commerce, and economics. High dimensions of the text representation decrease efficiency of clustering, and an effective solution for this challenge is reducing dimensions of texts. Manifold learning is a powerful tool for nonlinear dimension reduction of high-dimensional data. Therefore, in this paper, for increasing efficiency of opinion texts clustering, by manifold learning, dimensions of the represented opinion texts are reduced based on sentiment and semantics, and their intrinsic dimensions are extracted. Then, the clustering algorithm is applied to dimension-reduced opinion texts. The proposed approach helps us to cluster opinion texts with simultaneous consideration of sentiment and semantics, which has received very little attention in the previous works. This type of clustering helps users of opinion texts to obtain more useful information from texts and also provides more accurate summaries in applications, such as the summarization of opinion texts. Experimental results on three datasets show better performance of the proposed approach on opinion texts in terms of important measures for evaluating clustering efficiency. An improvement of about 9% is observed in terms of accuracy on the third dataset and clustering based on sentiment and semantics.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3