Zinc Oxide Nanoparticles as Diagnostic Tool for Cancer Cells

Author:

Ibraheem Sumayah1ORCID,Kadhim Afraa Ali2,Kadhim Kadhim Ali3,Kadhim Ihssan A.4,Jabir Majid5ORCID

Affiliation:

1. Al_kindy College of Medicine, University of Baghdad, Baghdad, Iraq

2. Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq

3. Department of Pharmacy, Al-Yarmok University College, Baghdad, Iraq

4. Ministry of Science and Technology, Baghdad, Iraq

5. Applied Science Department, University of Technology, Baghdad, Iraq

Abstract

ZnO nanoparticles have various characteristics that make them attractive to be used in many medical applications like a cancer diagnosis. It can be used as a nanoprobe for targeting different types of cancer cells in vitro as a cancer cell recognition system. The present study aims to investigate the permeability of ZnO NPs through both normal and cancerous cell lines in humans. In vitro experiments for ZnO NPs inside the environment of living cells have been described, which would contribute to the visualization of nanoparticles as cancer diagnostic and scanning techniques. MCF7, AMJ13, and RD cancer cells, and also the normal breast cell line HBL, were used in in vitro imaging experiments. The findings revealed that ZnO NPs specifically incorporated within tumor cells while accumulating less inside normal cells. Our findings show that ZnO NPs may be identified inside cancer cells after 1 h of exposure and can endure up to 3 h, providing them appropriate for tumor cell imaging. The findings showed that ZnO NPs might be employed as an alternate fluorophore for diagnostic imaging in the early identification of solid cancers. Therefore, here we studied in vitro applications of ZnO NPs and their beneficial use as a diagnostic tool for cancer cell lines rather than normal cells. Taken together, ZnO NPs can be used as good targeting NPs for the development of imaging agents for early diagnosis of cancers.

Funder

Mustansiriyah University

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3