A Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Samples Using Squeeze and Excitation Learning

Author:

Bukhari Maryam1ORCID,Yasmin Sadaf1ORCID,Sammad Saima2ORCID,Abd El-Latif Ahmed A.3ORCID

Affiliation:

1. Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock, Pakistan

2. Allama Iqbal Open University, Islamabad, Pakistan

3. Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shibin Al Kawm 32511, Egypt

Abstract

Leukemia is a fatal category of cancer-related disease that affects individuals of all ages, including children and adults, and is a significant cause of death worldwide. Particularly, it is associated with White Blood Cells (WBC), which is accompanied by a rise in the number of immature lymphocytes and cause damage to the bone marrow and/or blood. Therefore, a rapid and reliable cancer diagnosis is a critical requirement for successful therapy to raise survival rates. Currently, a manual analysis of blood samples obtained through microscopic images is done to diagnose this disease, which is often very slow, time-consuming, and less accurate. Furthermore, in microscopic analysis, the appearance and shape of leukemic cells seem very similar to normal cells which make detection more difficult. In the past decades, deep learning utilizing Convolutional Neural Networks (CNN) has provided state-of-the-art approaches for image classification problems; however, there is still a gap to improve their efficacy, learning procedure, and performance. Therefore, in this research study, we proposed a new variant of deep learning algorithm to diagnose leukemia disease by analyzing the microscopic images of blood samples. The proposed deep learning architecture emphasizes the channel associations on all levels of feature representation by incorporating the squeeze and excitation learning that recursively performs recalibration on channel-wise feature outputs by modeling channel interdependencies explicitly. In addition, the incorporation of the squeeze-and-excitation process enhances the feature discriminability of leukemic and normal cells, and strategically assists in exposing informative features of leukemia cells while suppressing less valuable ones as well as improving feature representational power of deep learning algorithm. We show that piling these learning operations of squeeze and excite together in a deep learning model can improve the performance of the model in diagnosing leukemia from microscopic images based on blood samples of patients. Furthermore, an extensive set of experiments are performed on both cropped cells and full-size microscopic images as well as with data augmentation to address the problem of fewer data and to further boost their performance. The proposed model is tested on two publicly available datasets of blood samples of leukemia patients, namely, ALL_IDB1 and ALL_IDB2. The suggested deep learning model exhibits good results and can be utilized to make a reliable computer-aided diagnosis for leukemia cancer.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference75 articles.

1. Automated Screening System for Acute Myelogenous Leukemia Detection in Blood Microscopic Images

2. Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks

3. Biological and therapeutic aspects of infant leukemia

4. All-IDB: the acute lymphoblastic leukemia image database for image processing;R. D. Labati

5. Blood cell images segmentation using deep learning semantic segmentation;T. Tran

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3