FGSR: A Fine-Grained Ship Retrieval Dataset and Method in Smart Cities

Author:

Xian Yunting1,Xian Jin1ORCID,Lu Lu1,Tang Ji1

Affiliation:

1. School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

Abstract

Ship reidentification is an important part of water transportation systems in smart cities. Existing ship reidentification methods lack a large-scale fine-grained ship retrieval dataset in the wild and existing ship recognition solutions mainly focus on the ship target identification rather than the fine-grained ship reidentification. Furthermore, previous ship target identification systems are usually based on synthetic aperture radar (SAR) image, automatic identification system (AIS) data, or video streaming, which is confronted with expensive deployment costs, such as the installation cost of SAR and AIS, and the communication and storage overhead. Indeed, ship reidentification benefits for traffic monitoring, navigation safety, vessel tracking, etc. To address these problems, we propose a new large-scale fine-grained ship retrieval dataset (named FGSR) that consists of 30,000 images of 1000 ships captured in the wild. Besides, to tackle the difficulty of spatial-temporal inconsistency in ship identification in the wild, we design a multioriented ship reidentification network named FGSR-Net that consists of three modules to address different crucial problems. The pyramid fusion module was aimed at addressing the problem of variant size and shape of ship targets, the occlusion modules attempt to detect the unchangeable area of ship images, while the multibranch identity module generates discriminative feature representation for ship targets from different orientations. Experimental evaluations on FGSR dataset show the effectiveness and efficiency of our proposed FGSR-Net. The mean average precision of ship reidentification is around 92.4%, and our FGSR-Net proposed method only takes 3 seconds to give the retrieval results from 30,000 images.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3