Travel Matrix Enabled Delta-Based Roadside Units Deployment for Vehicular Ad Hoc Networks: A Case of Kigali City

Author:

Twahirwa Evariste1ORCID,Laha Moyukh2ORCID,Rwigema James1ORCID,Datta Raja2ORCID

Affiliation:

1. University of Rwanda-College of Science and Technology (African Center of Excellence in Internet of Things), Kigali, Rwanda

2. Indian Institute of Technology(IIT)-Kharagpur, Kharagpur, India

Abstract

Placements of Road Side Units (RSUs) are an important issue of vehicular networks in urban areas. The merged cost of procurement, installation, and maintenance of intelligent RSUs is high, and therefore, cost-effective deployment strategies are necessary. In this article, we propose a scheme that optimally deploys intelligent roadside units using a travel matrix scheme based on the classical delta strategy where urban vehicles are involved in RSUs communication in the course of their travel times. Four (4) vehicular communication modes are studied, namely, (a) travel matrix based on delta RSUs deployment communication, (b) road intersection-based RSUs deployment communication, (c) road segmentation, and (d) free vehicle-to-vehicle communication. A baseline algorithm is suggested to determine the optimal locations of RSUs in terms of their geographical positions. A travel matrix technique is proposed to trace vehicles’ routeways and travel times in some points of interest (POI). Our intention is to seek an approach that reduces the required number of RSUs and ensures greater network performance effectiveness in terms of packets delivery ratio, throughput, message delay, and jitter; from our study, travel matrix delta-based placement of RSUs becomes the best in our case study scenario. The simulation results indicate that the travel matrix deployment is a suitable deployment scheme in the case study area since it can reduce the number of RSUs while enhancing the vehicular communication abilities under different vehicle density scenarios.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Layout Method for Roadside LiDAR and Camera;IEEE Access;2024

2. Centralized RSU Deployment Strategy for Effective Communication in Multi-hop Vehicular Adhoc Networks (VANETs);International Conference on Innovative Computing and Communications;2023-10-26

3. Hierarchical Clustering Based on Dendrogram in Sustainable Transportation Systems;IEEE Transactions on Intelligent Transportation Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3