Development of Prototype Laboratory Setup for Selective Detection of Ethylene Based on Multiwalled Carbon Nanotubes

Author:

Kathirvelan J.1,Vijayaraghavan R.2

Affiliation:

1. School of Electronics Engineering (SENSE), VIT University, Vellore 632 014, India

2. School of Advanced Sciences (SAS), VIT University, Vellore 632 014, India

Abstract

We report here a prototype laboratory setup for detecting ethylene (C2H4) in ppm level employing a sensor made of multiwalled carbon nanotubes of 40 nm average tube diameter. The proposed reversible chemoresistive ethylene sensor is fabricated using Kapton as the substrate onto which carbon nanotubes are coated using thick film technology. IDT silver electrodes are printed using piezo head based ink-jet printing technology. The increases in electrical resistance of the sensor element are measured on exposure to ethylene for different ethylene concentrations using a potentiostat and data acquisition system. The increase in resistance of the calibrated sensor element on exposure to ethylene (analyte) is about 18.4% at room temperature for 50 ppm ethylene concentration. This change is reversible. Our sensor element exhibits a better performance than those reported earlier (1.8%) and it has got the rise and fall time of 10 s and 60 s, respectively. It could be used for testing the ripening of fruits.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3