Recovering Individual’s Commute Routes Based on Mobile Phone Data

Author:

Song Xin1ORCID,Ouyang Yuanxin1ORCID,Du Bowen1ORCID,Wang Jingyuan1ORCID,Xiong Zhang12

Affiliation:

1. School of Computer Science and Technology, Beihang University, Beijing, China

2. Research Institute of Beihang University in Shenzhen, Shenzhen, China

Abstract

Mining individuals’ commute routes has been a hot spot in recent researches. Besides the significant impact on human mobility analysis, it is quite important in lots of fields, such as traffic flow analysis, urban planning, and path recommendation. Common ways to obtain these pieces of information are mostly based on the questionnaires, which have many disadvantages such as high manpower cost, low accuracy, and low sampling rate. To overcome these problems, we propose a commute routes recovering model to recover individuals’ commute routes based on passively generated mobile phone data. The challenges of the model lie in the low sampling rate of signal records and low precision of location information from mobile phone data. To address these challenges, our model applies two main modules. The first is data preprocessing module, which extracts commute trajectories from raw dataset and formats the road network into a better modality. The second module combines two kinds of information together and generates the commute route with the highest possibility. To evaluate the effectiveness of our method, we evaluate the results in two ways, which are path score evaluation and evaluation based on visualization. Experimental results have shown better performance of our method than the compared method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3