Size Effect of Concrete Specimens on the Acoustic Emission Characteristics under Uniaxial Compression Conditions

Author:

Wu Jianbo1ORCID,Wang Enyuan2ORCID,Ren Xuekun2,Zhang Mingwei3ORCID

Affiliation:

1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Acoustic emission (AE) experiments under uniaxial compression and cyclic loading-unloading compression conditions were performed using different sizes of cubic concrete specimens. The influences of the loading methods and the concrete sizes on the mechanical parameters and the concrete AE activities were analyzed. The loading method was found to have great impact on the deformation, failure, and energy dissipation of concrete materials. With the increase of the material size, the uniaxial compressive strength of the concrete specimens gradually decreased, while the corresponding strain of peak strength increased first and then decreased. The elasticity modulus fluctuated irregularly. Under the uniaxial compression conditions, five AE patterns corresponding to the deformation and failure of the concrete materials were observed. A significant nonlinear relationship was found between the AE and the stress level. The cumulative AE rings at the peak stress showed nonlinear growth with the increase of the concrete size. Based on an established relationship between the cumulative AE rings and the stress level, the necessary conditions for the existence of the quiet AE period were given. Under the uniaxial cyclic loading-unloading compression conditions, the Felicity ratio decreased first and then increased as the stress increased. The research results have some guiding significance to AE-based monitoring of internal stress evolution of coal, rock, and concrete materials and thereby enable assessment of their stability.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3