Cloud Computing Task Scheduling Model Based on Improved Whale Optimization Algorithm

Author:

Jia LiWei1ORCID,Li Kun1,Shi Xiaoming1

Affiliation:

1. Computer Teaching and Research Section, Department of Public Infrastructure, Henan Medical College, Zhengzhou, Henan 451191, China

Abstract

The efficiency of task scheduling under cloud computing is related to the effectiveness of users. Aiming at the problems of long scheduling time, high cost consumption, and large virtual machine load in cloud computing task scheduling, an improved scheduling efficiency algorithm (called the improved whale optimization algorithm, referred to as IWC) is proposed. Firstly, a cloud computing task scheduling and distribution model with time, cost, and virtual machines as the main factors is constructed. Secondly, a feasible plan for each whale individual corresponding to cloud computing task scheduling is to find the best whale individual, which is the best feasible plan; in order to better find the optimal individual, we use the inertial weight strategy for the whale optimization algorithm to improve the local search ability and effectively prevent the algorithm from reaching premature convergence; we use the add operator and delete operator to screen individuals after each iteration which is completed and updated to improve the quality of understanding. In the simulation experiment, IWC was compared with the ant colony algorithm, particle swarm algorithm, and whale optimization algorithm under a different number of tasks. The results showed that the IWC algorithm has good results in terms of task scheduling time, scheduling cost, and virtual machine. The application is in cloud computing task scheduling.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning and optimization enabled multi-objective for task scheduling in cloud computing;Network: Computation in Neural Systems;2024-08-20

2. Cost minimization approach with hybrid optimization based task scheduling in Geo-distributed cloud;Australian Journal of Electrical and Electronics Engineering;2024-06-27

3. A Dynamic Task Scheduling Algorithm Based on Learning Automata for Cloud Computing;2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2024-03-29

4. Reducing Task Scheduling Time in Cloud Computing using Novel Improved Whale Optimization Algorithm over Ant Colony Algorithm;2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies;2024-03-22

5. Cloud Computing Task Scheduling Techniques and its Trends;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3