Affiliation:
1. Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380453, Chile
2. Department of Basic Sciences, Santo Tomas University, Viña del Mar 2561780, Chile
Abstract
The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction,α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxicα-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i) the formation ofα-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii) the formation of adducts withα- andβ-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.
Funder
Fondo Nacional de Desarrollo Científico y Tecnológico
Subject
Psychiatry and Mental health,Neurology (clinical),Neuroscience (miscellaneous)
Cited by
126 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献