Analysis and Denoising of Hyperspectral Remote Sensing Image in the Curvelet Domain

Author:

Xu Dong1ORCID,Sun Lei1,Luo Jianshu1,Liu Zhihui2

Affiliation:

1. College of Science, National University of Defense Technology, Changsha, Hunan 410073, China

2. Department of Radiation Oncology, The 89th Hospital of PLA, Weifang, Shandong 261045, China

Abstract

A new denoising algorithm is proposed according to the characteristics of hyperspectral remote sensing image (HRSI) in the curvelet domain. Firstly, each band of HRSI is transformed into the curvelet domain, and the sets of subband images are obtained from different wavelength of HRSI. And then the detail subband images in the same scale and same direction from different wavelengths of HRSI are stacked to obtain new 3-D datacubes of the curvelet domain. Again, the characteristics analysis of these 3-D datacubes is performed. The analysis result shows that each new 3-D datacube has the strong spectral correlation. At last, due to the strong spectral correlation of new 3-D datacubes, the multiple linear regression is introduced to deal with these new 3-D datacubes in the curvelet domain. The simulated and the real data experiments are performed. The simulated data experimental results show that the proposed algorithm is superior to the compared algorithms in the references in terms of SNR. Furthermore, MSE and MSSIM in each band are utilized to show that the proposed algorithm is superior. The real data experimental results show that the proposed algorithm effectively removes the common spotty noise and the strip noise and simultaneously maintains more fine features during the denoising process.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3