Mechanical Properties and Deterioration Instability of Filling Body with Gangue-Cement Material Based on AE Experiment

Author:

Yu Guofeng12,Han Yunchun1ORCID,Yu Xiaoyang3ORCID,Bao Ren1,Guo Jiaxing4,Feng Qingbo4

Affiliation:

1. State Key Laboratory of Deep Coal Mining & Environment Protection, Coal Mining National Engineering Technology Research Institute, Huainan 232001, China

2. School of Energy and Safety, Anhui University of Science and Technology, Huainan 232001, China

3. A-level International Curriculum Center, Hefei University of Technology, Hefei, 230009, China

4. North Yansheng Engineering Technology Co., Ltd, Qinhuangdao 066000, China

Abstract

Gangue materials have been used to solve mine disasters with a support tunnel along the goaf and filling mining. Mastering the properties and damage characteristics of filling materials is an important basis for effective implementation. Based on the conventional uniaxial compression acoustic emission (AE) test, the effects of cementitious materials, ratio between water and cementitious material, gangue particle size, and grading parameters on the mechanical properties of gangue-cement samples were analyzed. The stage characteristics of compression deformation were studied. The fracture propagation characteristics and rock mass failure types induced by different graded gangues were revealed. The fracture forming mechanism from clustered damage and failure was interpreted. The results show that the compressive strength of the backfill increases with the increase of cementitious material; however, it decreases with the increase of water binder ratio. Controlling the proportion and dosage of materials was the key factor to realizing pumpability and stability. Combined with the deformation and AE characteristics, the failure stage of the backfill body is divided into three stages: linear deformation-low energy changing, block compression-high energy changing, and gentle stability-stable energy changing. Affected by the gangue distribution, the load in each stage will induce fracture to produce five distribution modes of single, turning, breakthrough, bifurcated, and collapsed surrounding gangue. In the process of loading failure, different gradation and particle sizes will also change its stress concentration characteristics, resulting in the transformation of rock failure types. The surface structure and roughness of gangue play an important role in the compressive performance of cement paste. The research results try to provide some guidance for efficient filling mining.

Funder

Natural Science Foundation of Anhui Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3