Effect of DEHP on SCFA Production by Anaerobic Fermentation of Waste Activated Sludge

Author:

Gong Rui12,Tang Xiang12,Fan Changzheng12ORCID,Zhang Baowei12,Zhou Man12

Affiliation:

1. College of Environmental Science and Engineering, Hunan University, Changsha 410082, China

2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China

Abstract

Diethylhexyl phthalate (DEHP) is a common plasticizer in industrial production. Recently, environmental problems caused by microplastics have drawn wide attention. As the microplastics have a large specific surface area, the release rate of the plasticizer from the microplastics to the environment is accelerated. The DEHP in the wastewater enters the wastewater treatment plants (WWTPs) along with the urban pipeline. After DEHP enters the WWTPs, it may affect the anaerobic fermentation with waste activated sludge (WAS) as raw material. So far, there has been no study on the effect of DEHP on anaerobic fermentation of WAS. Our study focused on the impact of exogenous DEHP on WAS anaerobic fermentation, and the results showed that DEHP mainly affects the solubilization stage of sludge anaerobic digestion, but has no significant effect on other stages. It does not affect the total yield and composition of short-chain fatty acids (SCFA). However, DEHP inhibited the solubilization process of WAS anaerobic fermentation, which was mainly manifested by the changes of soluble protein and soluble polysaccharide in the system. The results of the analysis of microbial communities revealed that the addition of DEHP did not change the diversity of microbial communities, but caused a change in the abundance of microbial organisms. DEHP reduced the abundance of acetogen bacteria and increased the abundance of methanogens. This work provides some insights into WAS fermentation systems in the presence of DEHP and helps to gain a better understanding of the potential environmental hazards of microplastics.

Funder

Hunan University

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3