Helminthostachys zeylanica Water Extract Ameliorates Airway Hyperresponsiveness and Eosinophil Infiltration by Reducing Oxidative Stress and Th2 Cytokine Production in a Mouse Asthma Model

Author:

Huang Wen-Chung12,Ting Nai-Chun3,Huang Yu-Ling4,Chen Li-Chen25ORCID,Lin Chwan-Fwu67ORCID,Liou Chian-Jiun28ORCID

Affiliation:

1. Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan

2. Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan

3. Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City 33303, Taiwan

4. National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Beitou, Taipei, Taiwan

5. Department of Pediatrics, New Taipei Municipal Tu Cheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, Taiwan

6. Department of Cosmetic Science, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan

7. Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan

8. Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan

Abstract

Helminthostachys zeylanica is a traditional folk herb used to improve inflammation and fever in Taiwan. Previous studies showed that H. zeylanica extract could ameliorate lipopolysaccharide-induced acute lung injury in mice. The aim of this study was to investigate whether H. zeylanica water (HZW) and ethyl acetate (HZE) extracts suppressed eosinophil infiltration and airway hyperresponsiveness (AHR) in asthmatic mice, and decreased the inflammatory response and oxidative stress in tracheal epithelial cells. Human tracheal epithelial cells (BEAS-2B cells) were pretreated with various doses of HZW or HZE (1 μg/ml–10 μg/ml), and cell inflammatory responses were induced with IL-4/TNF-α. In addition, female BALB/c mice sensitized with ovalbumin (OVA), to induce asthma, were orally administered with HZW or HZE. The result demonstrated that HZW significantly inhibited the levels of proinflammatory cytokines, chemokines, and reactive oxygen species in activated BEAS-2B cells. HZW also decreased ICAM-1 expression and blocked monocytic cells from adhering to inflammatory BEAS-2B cells in vitro. Surprisingly, HZW was more effective than HZE in suppressing the inflammatory response in BEAS-2B cells. Our results demonstrated that HZW significantly decreased AHR and eosinophil infiltration, and reduced goblet cell hyperplasia in the lungs of asthmatic mice. HZW also inhibited oxidative stress and reduced the levels of Th2 cytokines in bronchoalveolar lavage fluid. Our findings suggest that HZW attenuated the pathological changes and inflammatory response of asthma by suppressing Th2 cytokine production in OVA-sensitized asthmatic mice.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3