Effective Admittivity of Biological Tissues as a Coefficient of Elliptic PDE

Author:

Seo Jin Keun1ORCID,Bera Tushar Kanti1ORCID,Kwon Hyeuknam1,Sadleir Rosalind2

Affiliation:

1. Department of Computational Science and Engineering, Advanced Science and Technology Center (ASTC), Yonsei University, 50 Yonsei-Ro, 134 Sinchon-dong, Seodaemun-gu, Seoul 120 749, Republic of Korea

2. J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-5, P.O. Box 116131, Gainesville, FL 32611, USA

Abstract

The electrical properties of biological tissues can be described by a complex tensor comprising a simple expression of the effective admittivity. The effective admittivities of biological tissues depend on scale, applied frequency, proportions of extra- and intracellular fluids, and membrane structures. The effective admittivity spectra of biological tissue can be used as a means of characterizing tissue structural information relating to the biological cell suspensions, and therefore measuring the frequency-dependent effective conductivity is important for understanding tissue’s physiological conditions and structure. Although the concept of effective admittivity has been used widely, it seems that its precise definition has been overlooked. We consider how we can determine the effective admittivity for a cube-shaped object with several different biologically relevant compositions. These precise definitions of effective admittivity may suggest the ways of measuring it from boundary current and voltage data. As in the homogenization theory, the effective admittivity can be computed from pointwise admittivity by solving Maxwell equations. We compute the effective admittivity of simple models as a function of frequency to obtain Maxwell-Wagner interface effects and Debye relaxation starting from mathematical formulations. Finally, layer potentials are used to obtain the Maxwell-Wagner-Fricke expression for a dilute suspension of ellipses and membrane-covered spheres.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliography;Topology Optimization and AI-based Design of Power Electronic and Electrical Devices;2024

2. Equations of electromagnetic field;Topology Optimization and AI-based Design of Power Electronic and Electrical Devices;2024

3. Theoretical Assumptions in Conductivity and Dielectric Properties Assessment of Biological Tissues - Errors and Resulting Consequences;2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE);2023-03-23

4. Electrodeformation of White Blood Cells Enriched with Gold Nanoparticles;Processes;2022-01-10

5. Regional Admittivity Reconstruction With Multi-Frequency Complex Admittance Data Using Contactless Capacitive Electrical Tomography;IEEE Sensors Journal;2021-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3